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Thermolubricity in atomic-scale friction
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In this paper, we use a set of rate equations to describe the thermal activation of a tip moving along a
one-dimensional lattice, including the possibility of multiple back and forth jumps between neighboring po-
tential wells. This description of an atomic-scale friction experiment is used to investigate how temperature
acts as a lubricant, an effect that we refer to as thermolubricity. We discuss the detailed theoretical aspects of
the model, which explains many aspects of the variation in atomic friction over a wide range of temperatures,
velocities, and surface corrugations. We conclude that friction at low velocities and low surface corrugations is
much lower than the weak logarithmic velocity dependence predicted before. Another consequence of the
model is the trivial result that friction is zero in the zero-velocity limit. We confront numerical results from our
theoretical model with experiments, in which the surface corrugation was controlled by use of geometrical
effects, to demonstrate the experimental existence of thermolubricity. Although the calculations produce ex-
cellent fits to our data, the values of the fitting parameters clearly indicate that the underlying single-spring
model suffers from an intrinsic flaw, which we ascribe to either the absence of flexibility of the tip or the

restriction to a one-dimensional sliding geometry.

DOLI: 10.1103/PhysRevB.78.155440

I. INTRODUCTION
A. General

The role of temperature in atomic-scale friction recently
has become a subject of deep interest in the field of nanotri-
bology. As early as in 1928, Prandtl' recognized the effect of
temperature and the reduction in friction due to thermal ac-
tivation of macroscopic sliding objects. Although Prandtl!
considered friction in a rather generic context, not describing
the nanoscale details of the phenomenon, the results of his
model capture the essence of the lubricating role played by
temperature.

It has taken seven decades to demonstrate the importance
of Prandtl’s predictions' because, with the advent of the
atomic force microscope (AFM) and especially the friction
force microscope (FFM), it has become possible only re-
cently to investigate these thermal effects experimentally on
the atomic scale. Measurements on this scale can be per-
formed with an atomically sharp AFM or FFM tip that is
dragged over a crystal lattice under a modest normal load.
The tip is connected via a flexible cantilever with a well-
defined lateral spring constant k to a rigid support.

If we start by neglecting the role of thermal excitations,
we can describe the motion of the tip within the framework
of the Tomlinson model.? In the absence of thermal excita-
tions, the only force available to make the tip overcome the
atomic potential barriers is the spring force exerted by the
support via the cantilever. That is, the tip mechanically slips
to the next potential minimum when the combined system of
the cantilever and the tip-surface interaction becomes un-
stable, which is the case when the tip is at a location where
the second derivative of the surface potential U with respect
to the tip position x is equal to the spring constant of the
cantilever (i.e., d*U/dx*=k). As the consequence of this
dragging, the tip repeatedly slips over the atomic barriers
with a saw-tooth-like variation in the lateral force, which is
known as stick-slip motion.
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There are two important implicit assumptions within the
Tomlinson model.? First, the tip resides always in a (local)
minimum of the total potential (tip-surface interaction poten-
tial plus elastic energy of the deformed cantilever). Second,
in every slip event the tip dissipates its excess energy instan-
taneously and completely, i.e., the motion of the tip in the
local potential-energy well is overdamped. The landscape of
local minima and maxima in the combined potential experi-
enced by the tip changes continually with the motion of the
support, new local minima being formed and existing ones
being removed every time the support is moved over one
lattice spacing of the substrate. When the depth of the local
minimum in which the tip resides is reduced to zero the tip
slips to the next minimum. We refer to these unstable points
where the tip has to slip to the next potential minimum as
critical points. At zero absolute temperature, the stick-slip
motion of the tip faithfully reproduces the lattice of these
critical points, which has precisely the same symmetry and
lattice constants as the substrate lattice.

Thermal excitations assist the tip in overcoming the bar-
riers prior to the critical points mentioned above. This intro-
duces a stochastic element (noise) in the motion and reduces
the average lateral force, i.e., leads to less friction. In this
paper, we introduce thermal excitations in the Tomlinson
model® and cast its solution in the form of a set of rate
equations that we solve numerically. We end the paper by
demonstrating these thermal effects in actual measurements
of nanoscale friction on a graphite surface.

B. Modest thermal effects: The ‘“thermal Tomlinson model
(Ref. 2)”

As described above, the traditional Tomlinson model? de-
scribes friction on a very simple level. It involves only two
contributions to the total potential energy of the system,
namely, the energy stored in the cantilever spring and the
tip-substrate interaction, and it provides a fully deterministic
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FIG. 1. Profiles of the combined potential of the cantilever
spring and the interaction between the FFM tip and the surface,
plotted as a function of the tip position x, as the support is dragging
the tip along the X axis. The curves are for three different support
positions X and have been calculated for a lateral cantilever spring
coefficient of k=1.8 N/m and for a corrugation of the surface po-
tential of 0.5 eV.

description of the atomic-scale stick-slip motion of the tip.
We now first consider the effect of modest thermal vibrations
of the atoms in the tip and those in the substrate. We start
with the tip in one of the local minima in the combined
potential, sketched in Fig. 1. Like all degrees of freedom of
the cantilever-tip-substrate system, the vibrational mode con-
necting the present tip configuration with the next potential-
energy minimum carries an average energy of %kBT. When
the support is translated parallel to the surface, the potential
barrier height U separating the local minimum in which the
tip resides from the next minimum gradually decreases.
When it is comparable to a few times the thermal energy the
tip has a high probability per unit of time to jump to the next
potential minimum. In this way, at finite temperatures (and
finite scan velocities) the tip almost never reaches the critical
point at which the system is mechanically unstable and the
tip is forced to slip. The role of thermal activation manifests
itself in any time dependent experiment on atomic friction.
The simplest example is the velocity dependence. Glosli and
McClelland? were the first who examined this in atomic fric-
tion using molecular-dynamics simulations. They investi-
gated the rupture of molecular bonds and the resulting stick-
slip motion of an AFM tip on polymers and modeled it on
the basis of thermally activated motion of the tip between
surface-potential wells. Using straightforward transition-state
theory, they introduced an attempt frequency r, and a Bolt-
zmann factor to predict the rate of successful forward jumps
between neighboring potential wells in order to compute the
flow of probability from one potential well to the next,*>

LU = roP(t)exp<— A}i]—;(t))
B

dt M

Here, P(7) is the probability of finding the tip in a particular
potential well and U*(z) is the height of the potential barrier
remaining in the forward direction. The main assumption
here is that the tip can perform a precritical jump to the next
potential well, but the possibility of a reverse jump is com-
pletely neglected since the barrier height for such a reverse
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jump is much higher than the forward barrier. This simple
picture predicts that one can vary the strength of the effect of
thermal excitations on the sliding motion by varying either
the temperature 7, the amplitude U, of the corrugation of the
tip-surface interaction potential, or the scan velocity V of the
support. The dependence of the resulting friction force Fiy;,
on 7 and on U, should be strong, while the dependence on V'
may be expected to show a weak logarithmic-type character
in view of the exponential form of the Boltzmann factor.*~8

This activated process can be formulated in terms of the
Fokker-Planck equation.” Dudko et al.'® proposed an elegant
treatment of the thermal activation of the tip, generalizing
the Tomlinson model®> by adding a noise term. Their model
takes into account the irregular motion of the tip, as the
temperature increases. This model only includes the effect of
forward jumps and they argued that the inclusion of back-
ward jumps would lead to a further reduction in friction at
low velocities when the frequency of such jumps would be
substantial. Dudko er al.'® concluded that at lower velocities,
atomic friction has a weak logarithmic dependence on the
scanning velocity due to thermal fluctuations, while at higher
velocities, viscous drag dominates.

C. Strong thermal effects: “Thermolubricity”

Recently, Evstigneev and Reimann'! analyzed the thermal
activation of the tip, for a wide range of spring constants,
describing the rates of multiple back and forth jumps of the
tip. Thermal excitations can result in multiple jumps of the
tip, both in the direction of the moving support and against
that direction. This implies that the logarithmic velocity de-
pendence of atomic friction, which is the result of only the
forward jumps, should be restricted to a limited velocity
range.

Interestingly, comparatively little attention has been paid
to the regime of low velocities, where thermal effects should
manifest themselves at full strength.'> An alternative way to
view the tip motion under these conditions is as a form of
“driven diffusion” or biased thermal drift. As we shall see,
the contribution of reverse jumps depends strongly on 7, U,,
and V and becomes significant when kz7T/ U is sufficiently
high and/or V is sufficiently low. When the time that the
support takes to travel over one atomic distance is long
enough that the tip makes several spontaneous forward and
reverse jumps in that time, the required bias to make the tip
follow the slow support motion, i.e., to make the frequency
of forward jumps slightly higher than that of reverse jumps,
is very small; in other words the friction force becomes ex-
tremely low. For this situation we have introduced the term
thermolubricity.'?

In Secs. II and III we employ a set of rate equations that
we evaluate numerically to analyze this low-velocity regime
and its connection to the regime of intermediate velocities,
where stick-slip motion is retrieved, with the logarithmiclike
velocity dependence. We confront our model with
published'® as well as different experimental data, demon-
strating clear thermal effects at different surface corruga-
tions, and we report strong manifestations of thermolubricity
in velocity-dependent atomic-scale friction measurements.
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The model is able to produce an excellent fit to each data set.
However, the value of one of the essential fitting parameters
needs to be chosen very differently for each choice of the
sliding velocity. This serves as a strong indication that our
model is still incomplete. We propose that the missing ele-
ment is either in the neglect of the high-frequency tip apex
fluctuations that we have discussed in several recent publi-
cations about the two-mass-two-spring model for the dynam-
ics of the friction force microscope!4'® or in the one-
dimensional geometry of the model.

1II. MODEL
A. Basic parameters and possible regimes

The Tomlinson model® accounts for two contributions to
the potential energy of the system, namely, the elastic energy
of the cantilever and the interaction between the tip and the
surface,

where a is the lattice constant of the substrate, x the position
of the tip, and X the position of the support, which drags the
tip over the potential barriers. Typical examples of this po-
tential profile are given in Fig. 1. We define a dimensionless
parameter, which we will refer to as the relative corrugation
or the Tomlinson parameter,’

U,
’)/=2’772le(;. (3)

This parameter describes the relative strength of the potential
corrugation with respect to the cantilever stiffness.

When y>1 the total potential energy of Eq. (2) exhibits
several local minima, which leads to the familiar stick-slip
instabilities in the motion of the tip. When y=1, i.e., when
the cantilever is sufficiently stiff with respect to the surface
corrugation, there is only a single stable minimum in the
total potential energy for every support position. Under these
conditions, the cantilever distortions (compression and elon-
gation) still follow the sinusoidal atomic corrugation of the
surface, but the motion is smooth and exhibits no stick-slip
instabilities. Within the Tomlinson model,2 the net friction
force is zero in this case, the backward lateral forces experi-
enced while climbing the potential hills being precisely equal
to the forward forces felt half a period later while descending
into the valleys. In other words, the energy invested in the
first half of the period is returned to the system during the
second half, as a result of which there is no energy dissipa-
tion. There are several ways to bring a sliding system into
this regime. Socoliuc et al.'” reduced the amplitude U, of the
tip-surface potential by scanning their tip over an NaCl(100)
surface at significant negative normal forces, i.e., while pull-
ing against the van der Waals attraction between tip and sur-
face, until they found reversible sliding with ultralow dissi-
pation. Dienwiebel et al.'> measured the lateral forces
between a graphite flake and a graphite surface. By rotating
the two lattices with respect to each other, they were able to
make U, low enough to result in ultralow dissipation, even
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for substantial (positive) normal forces. In this case, where
the slipperiness is caused by the incommensurability of the
contacting lattices, we speak of superlubricity.'>'320 We
should realize that in the cases of ultralow friction discussed
here, the dissipation is not completely absent. Even when
stick-slip instabilities are completely avoided, the system can
lose energy irretrievably by processes such as electron-hole
pair generation.

We return to the stick-slip case, where y>1. It is easy to
derive the values of y at which the number of local minima
in the potential changes. For instance, if 1 <y< %77, the total
potential U will have either one or two wells, depending on
the position X of the support. Generally, there will be n or
(n—1) wells when %77< y= %ﬂ'.

At nonzero temperature the dynamics of the tip are to be
taken into account. There are four basic time scales or fre-
quencies involved in this problem: (1) the frequency with
which the support scans over the atomic lattice; (2) the fre-
quency v of rapid inherent motion of the tip-cantilever com-
bination in a potential well, which depends weakly on the tip
position, v=(2m)"'M~V2(k+272Uy/ a*)"?, with M as the ef-
fective mass of the cantilever-plus tip; (3) the frequency of
successful thermally activated jumps between potential
wells; and (4) the damping parameter 7, which is the rate of
relaxation of the energy and momentum of the tip-cantilever
combination into the phonon bath and into other excitations
of the substrate, tip, or cantilever.

We assume the backward and forward jump rates r; of
the tip between neighboring potential wells to follow a
simple Arrhenius law,

. U;
ri=rg CXP(— k_T) (4)
B

where the subscript i refers to the specific potential well, Uii
is the potential-energy barrier for a forward jump (+) to well
i+1 or for a reverse jump (-) to well i—1, and the pre-
exponential factor ry is the attempt rate for such jumps. Since
the potential profile within the Tomlinson model? itself is
changing continually due to the support motion, the potential
barriers are functions of the support position, ie., U
= U;: (X). We follow the simple form of transition-state
theory and equate the pre-exponential factor r, of Eq. (4) to
the vibrational frequency v.

Equation (4) explicitly shows us that when the support
moves forward and reduces the forward energy barrier, the
rate of jumps to the next local energy minimum increases
exponentially (Fig. 2). This makes the precritical jumps al-
most inevitable while jumps from deep potential wells can be
rather infrequent.

At this stage, we introduce two dimensionless parameters
that allow us to distinguish between several qualitatively dif-
ferent friction regimes,

4 Vv

o= ~ —

av any

E}
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FIG. 2. Variation in the lateral force with the support position X
[solutions of Eq. (2)]. The exponentially varying probabilities of
thermally assisted jumps are indicated here via the density of solid
arrows (forward jumps) and dashed arrows (backward jumps).

_(V U\ _ Yo
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Here, o shows how fast or slow the scanning process is with
respect to both the inherent motion of the tip in a surface-
potential well and the relaxation rate of the momentum to the
thermal bath; 3 is a parameter that shows how fast or slow
the scanning process is with respect to the rate of activated
jumps of the tip between neighboring surface-potential wells.
Obviously, the two parameters are related.

Stick-slip motion occurs in the velocity regime, where the
support drags the tip to the next minimum before the tip
jumps by itself due to thermal activation. In terms of the two
parameters, this implies that the stick-slip regime corre-
sponds to the case a<<1, 8> 1, where thermal activation is
negligible and the tip sticks nearly everywhere in a potential
well except in the vicinity of the critical point where it will
make a precritical jump to the next well. There are two im-
portant time scales involved in this process: one is the slow
time variation in the support motion that drags the tip to the
next potential well and the other is the rapid motion of the tip
apex within each potential well. The first inequality a<<1
assures that the movement of the tip from the critical point to
the neighboring well is much faster (actually on the order of
v7!) than the slower motion of the support. So it is seen by
the support as a fast slip. The excess energy released during
the transition from the critical point to the bottom of the well
is completely dissipated in the slip event (on a time scale of
77'). This is the origin of the fact that the friction force in
this regime is independent of the characteristic dissipation
rate. The slip starts in the vicinity, but, due to thermal exci-
tations, just before the critical point, which leads to a loga-
rithmic velocity dependence of the friction, as mentioned
before.*> Thermal activation of the tip manifests itself much
more strongly when we reduce S, which can be accom-
plished not only by lowering the velocity but, equivalently,
also by increasing the temperature or reducing the amplitude
of the potential. When B<<1, the scanning is slow with re-
spect to the natural occurrence of thermally activated jumps
between neighboring surface-potential wells. In this regime,
the tip can be found on average at a position X that effec-
tively “drifts” with the support position X, while the average
difference X—Xx determines the mean lateral force. Although
the instantaneous lateral force exhibits rapid irregular fluc-
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tuations with an amplitude in the order of the maximum
possible tip-surface force, the average lateral force is signifi-
cantly lower. We call this range of low velocities the thermal
drift regime. In the intermediate situation, say at S=1, the
tip exhibits on average one random jump per lattice spacing
traveled by the support. In this case, we expect to observe
irregular or stochastic stick-slip motion.

B. From stick slip to thermal drift
1. General approach

Here we concentrate on the cases a<<1, 8>1, and B
<1, which cover both the stick-slip and thermal drift re-
gimes. The average behavior of the system can be described
by an appropriate kinetic equation for the distribution func-
tion (probability density) to find the tip at a certain time at a
certain position x. In the case a<<1 under consideration, this
complicated situation can be substantially simplified by the
fact that, while being in a certain potential well, the motion
of the tip both in physical space and in energy space (char-
acterized by v and 7, respectively) is fast with respect to the
velocity of scanning.

The most dominant time scales at play in the measure-
ments are the long time scale of the slow scan motion and
the short time scale of the rapid motion of the tip within the
potential wells. In view of the large difference between these
time scales, we can average over the faster class of processes
and replace the probability density p(x,) by a discrete set of
probabilities p;(¢) of finding the tip in well i at time ¢. As-
suming that the transitions between neighboring wells follow
the Arrhenius law described by Eq. (4), we formulate the rate
of change in the probability p,(r) to find the tip in well i in
terms of the jump rates between well i and the two neigh-
boring wells, (i—1) and (i+1). In this way, the kinetic equa-
tion is reduced to a system of continuity equations for p;(¢) in
discrete space of the form

dp; dp;
yPi _ 4P

ax _dr (r; + )P+ ripici + riPisr - (6)

Again, V is the scan velocity, with which the support moves
over the surface, and p;, p;_;, and p;, are the probabilities of
finding the tip in wells i, i—1, and i+ 1. The jump rates r,-i
are determined by Eq. (4), with the potential barriers U; (X)
for forward or backward jumps from well i depending on
support position X. This set of differential equations natu-
rally describes all regimes involving thermal activation of
the tip. At low surface corrugations it incorporates the effects
of multiple back and forth jumps between neighboring po-
tential minima and at higher surface corrugations it describes
the flow of probability when the tip motion reduces to the
familiar precritical jumps that take place when the remaining
forward barrier U; (X) is a few times the thermal energy kT
or lower.

The mean (ensemble-averaged) lateral force as a function

of the support position X can be found as F(X)=—k(x—X).
The mean position of the tip, which appears in this expres-
sion, is given by ¥=%(X)==p,(X)x") (X). Here, the x!’\ rep-
resent the X-dependent positions of the wells (i.e., all local
minima of the total potential).
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Let us consider a simple situation in which at most two
local minima exist in the total potential energy. Since the
total probability is 1 and hence p;+p,=1, the system of Eq.
(6) is reduced to a unique equation for, say, p, (the probabil-
ity to be in the left well). Moreover, it is sufficient to find a
solution only for the motion over one period of the surface
potential, say, 0 <X <a. This is allowed by the fact that the
coordinate of the critical points corresponding to the disap-
pearance of the well of origin is smaller than a. Furthermore,
nontrivial behavior takes place only in the interval between
the critical points X', where a new well appears, and X", at
which the previous well disappears. Outside of this interval
either p;=1 (for 0<X<X') or p;=0 (for X" <X<a). In the
interval of interest X' <X <<X", the equation for p, takes the
form

dp, -

Vo = ripin=p), (7)
with ri=vexp(-U,/kgT) and r;=v exp(-U,/kgT). Here U,
and U, are the barriers between the two minima as seen from
the left and the right, respectively. Note that, for the given
potential of the form of Eq. (2), these quantities are known,
albeit cumbersome functions of X. The mean (ensemble-

averaged) lateral force as a function of X is given by
F=—kppxpin+ (1= p)xi, ~ X1, (8)

min min

2. Zero limit of B: The limiting case of zero velocity

We stay with the simple case, where only two potential-
energy wells exist. In the limit of vanishingly small 8, we
neglect the term in the left-hand side of Eq. (7) and find

=2 ©)
ry +r 7

Physically, this expression, together with p§°>=1—p§°>, de-

scribes the equilibrium distribution of positions of the tip

established in the situation when activated jumps between

the wells have enough time to occur many times before a

sizable displacement of the support takes place.

Since the ensemble-averaged lateral force F(”(X) at posi-
tion X is periodic with the lattice constant a, averaging over
one lattice spacing gives us the mean value of the lateral
force—the friction force—on a large time scale. An immedi-
ate result is that the friction force in the zero limit of B is
zero, i.e.,

1(%_
FO = - f FOqx =0. (10)
alo

Since BV, we conclude that

lim FfriC=O' (11)
V—0

We see that the friction force at finite temperature should
vanish in the zero-velocity limit because of the thermally
activated jumps of the tip between the surface-potential
wells. For any given surface corrugation and any nonzero
temperature, thermal jumps occur and, due to the thermal
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drift motion described here, friction will vanish in the limit
of zero velocity.

In a sense, the result of Eq. (11) is trivial. In fact, specu-
lations have been published that friction might vanish as the
velocity goes to zero.'” However, in many studies, this pos-
sibility has been ignored or overlooked. There is even a
study, performed with the extended adiabatic approximation
method, which suggested that whenever the thermal energy
would be lower than the potential barrier, static friction
would not vanish, even in the zero-velocity limit.2!

This result is important in at least two respects. First, a
strong decrease in the friction force with decreasing velocity
is expected when going down in velocity from the stick-slip
regime to the deep thermal drift regime, where Fy;. becomes
small and finally vanishes when V— 0. The overall behavior
for any given relative corrugation can be obtained from a
numerical solution of the corresponding system of equations
[Eq. (6)].

Second, the role of thermally activated processes requires
us to reconsider static friction. Static friction is the minimum
force required to set an object at rest into motion along the
surface. Within the classical Tomlinson model,? this force is
given by the maximum value of the lateral surface force,
which is determined by the corrugation of the surface poten-
tial, F,i.=mUy/a, and it is independent of whether the sub-
sequent motion is dissipative (y> 1, Fgi.=Fpi(Ug,y) #0) or
nondissipative (y<1, Fg;.=0). Apparently, the usual defini-
tion of static friction tacitly implies observation on a suffi-
ciently short time scale that thermal effects can be ignored.
On a larger time scale the object will exhibit thermally acti-
vated motion. In the absence of an external force, this is a
random walk along the surface, while in the case of a slowly
increasing bias the walk is not random but has the character
of biased diffusion. In this case, the system is not static and
the definition of static friction loses its meaning. The static
friction force could be understood as an essentially condi-
tional quantity. It is given by the maximum surface force,
provided that the external force increases sufficiently rapidly
and it will be smaller for a more slowly ramped external
force, as a result of the thermal jumps. Static friction will
simply vanish if the external force is ramped up sufficiently
slowly.

3. First-order approximation in (: Friction in the thermal drift
regime
In Eq. (6), if we introduce a first-order order term p!"
~ [ in the probability p; = p(lo) +p(11) for the tip to reside in
the first well and neglect second-order terms in 3, we get

dp(o)
D= V[t 45— 12
Pi 14 177 X (12)

Substituting this in Eq. (7) for the evolution of the probabili-
ties in the two-well case, we obtain

1 dU 1 dU 1d
p(11)=_vr‘1+r5[r‘{'+r5]—3|:__2___1 _l
kBT 70,4 kBT dX 4] aX
1d
__ﬁ]‘ 13)
) aX

We have introduced the last two terms to take into account
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explicitly that the attempt frequencies v; and v, for forward
and reverse jumps between wells 1 and 2 can be different
from each other and dependent on support position X, for
example, by making them proportional to the square root of
the curvature of the local potential. Note that p(l)— p(l)
Here, p(l) and p2l) describe the nonequilibrium correction to
the distribution of tip positions due to the fact that at nonzero
scanning velocity thermally activated jumps do not have
enough time to establish the true equilibrium distribution at
each support position X. As seen in Eq. (12), the effect is
proportional to two factors: the first factor, V[rj+r5]7",
shows how large is the systematic lack of time required to
realize the changes needed at every new support position X
and the second factor, dpgo)/dX, shows how p(lo) changes
with X, i.e., what changes in the distribution are to be real-
ized by the jumps. If the system moves to the right (V>0),
these changes are due to the first well becoming more shal-
low and the second well becoming deeper. As seen from Eq.
(13), all four contributions to p(lo) are positive. Consequently,
the overall effect is seen as a systematic delay of the transfer
of the tip from the first to the second well. Clearly, on aver-
age, this will lead to an increase in the ensemble-averaged
lateral force. The friction force experienced by the tip at
nonzero velocity will be nonzero.

Indeed, calculating the ensemble-averaged lateral force as
in Eq. (8) with p,=p\”+p{" using Egs. (8) and (13) we see
that F(X) is larger than F()(X) at every support position X
(except for the intervals where they coincide due to the tem-

porary absence of a second potential well). Averaging F(X)
over one lattice spacing,

(-
Ffric:_f FdX, (14)
alo

we obtain the friction force, which is nonzero at nonzero
velocity.

Now we assume for simplicity that, except at very high
temperatures, the effect of changes in the vibrational fre-
quencies v; and v, with changing X can be neglected with
respect to the more pronounced effect of changes in the po-
tential barriers, i.e., we neglect the last two terms in Eq. (13).
This leads to the following approximation to the average
lateral force:

Cha Uy, _

CkV Uy (UO
exp
4 kT

= ) (15)
4y kBT kBT

Fiicl g1 =

Here, v and U, are the characteristic values of the vibrational
frequency and the barriers in the total potential, respectively.
C is a dimensionless quantity representing the relative width
of the region of the support positions for which there is more
than one well in the total potential as a function of the tip
position, and hence, thermally activated jumps can occur. It
varies between C=0 at y=1 and C=1 at y=37/2. The fric-
tion force vanishes at y=1, as a reminiscence of the classi-
cal Tomlinson model.?

In the thermal drift regime, where B8<<1, Eq. (15) gives
the friction force linear in the scanning velocity, and it
strongly—exponentially—depends on both the effective cor-
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rugation and the temperature. Even a small decrease in U or
a small increase in 7 can lead to a substantial reduction in
friction. By initiating motion of the tip, here, temperature
acts as a lubricant.

In the derivations above, we assumed for simplicity that
the rates of thermally activated jumps of the tip can be cal-
culated in the framework of transition-state theory, so that
the pre-exponential factors were taken simply to be the vi-
brational frequencies, ry=v. This traditional approximation
tacitly assumes that the damping coefficient in the equation
of motion is of the order of the vibrational frequency, n~ v
A more general approach, valid for the case of both moderate
and strong dampings, allows estimating the jump rate pref-
actor as ry= 2/ 7. For this case, after revision of the deriva-
tions given above, the result [Eq. (15)], with a modest redefi-
nition of the y-dependent dimensionless factor C, becomes

U U
Fiiclge1 = C* k 1P\ kT MV, (16)

with M as the effective mass. This result is instructive in
several respects. First, we have an apparent result that the
friction force is proportional to the damping coefficient 7.
With increasing damping, at any surface corrugation, thermal
jumps become rarer and their role as a lubricant therefore
reduces, thus increasing friction toward the much higher
value characteristic for stick-slip type of motion.

Second, we notice that MV is equal to the friction expe-
rienced by an object of mass M moving along a featureless
surface with constant velocity V, as a result of dissipation to
the thermal bath with rate 7. Thus we expect friction to
approach Fp;.=nMYV at very high V. The lower-velocity fric-
tion reflects the nontrivial physics behind the thermal drift
motion of the tip. If the thermal jumps had enough time to
establish the equilibrium distribution of the tip positions
around the support position, the (mean) friction force would
be close to MV, as a result of the motion with mean veloc-
ity of the order of V. However, due to the lack of time at any
nonzero velocity, the distribution is not in equilibrium. A
systematic delay of the tip with respect to the mean equilib-
rium position, as discussed above, manifests itself as an in-
crease in friction. This effect is stronger when the jumps
become less frequent, i.e., at larger U/T, as seen from Eq.
(16). It is to be noted that the friction forces, although larger
than 7MYV, remain significantly lower than the value
~Uy/a~ka characteristic for the stick-slip motion, which
takes place when thermal jumps can be neglected.

4. Velocity dependence of friction over the full range of V

We briefly summarize the results from our model. In the
limiting case of large velocities (a¢> 1), the surface corruga-
tion does not perturb the motion of the tip, which follows the
support with constant velocity V. Friction is due to the direct
dissipation to the substrate (interaction with the phonon bath)
and hence it is linear in V, Fy;.=nMV.

At lower velocities (¢<<1 and 8> 1) the surface corruga-
tion forces the tip to perform quasiregular stick-slip motion.
To restore motion of the tip after every stick event, an exter-
nal force is required in the order of the maximum surface
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force, so that Fg;.~ Uy/a (which is ~ka when 7 is not too
large). The weak velocity dependence of friction in this re-
gime is mainly caused by thermally activated jumps in the
vicinity of the critical support positions, where the potential
barrier becomes small.

At even lower velocities (8<<1), thermally activated
jumps of the tip ruin the quasiregular stick-slip motion and
change it into a stochastic thermal drift. The friction force is
much lower than in the stick-slip case, being now caused by
a small deviation of the average position of the (strongly
fluctuating) tip from the support position. On the other hand,
the friction force turns out to be larger than it would be in the
case of constant velocity, since an effect of surface corruga-
tion is still there, although it now comes in a different way
than in the stick-slip regime.

In the limiting case of zero velocity, the friction force
vanishes since in this case, thermally activated jumps ruin
any effect of surface corrugation in the motion of the tip on
average. The thermal drift regime appears at low scanning
velocities, at elevated temperatures, or at lower surface cor-
rugations. In view of the strong exponential dependence of
on U/T, the transition between regimes can take place due to
even a small change in temperature or surface corrugation.
Interestingly, the effective corrugation of the tip-surface in-
teraction can vary in a very wide range. In Sec. IV, we will
mention in detail how these possibilities are realized.

III. NUMERICAL EVALUATION OF THE RATE
EQUATION: COMPLETE SOLUTIONS

We can analyze Eq. (6) numerically without any simpli-
fying approximation. To this end, we evaluate the probabili-
ties at regular time intervals At=AX/V, where AX is a small
step in support position (typically 0.001 nm) and V is the
constant scan velocity of the support. Assuming that at X
=0, the probability of finding the tip in the first well is unity,
the probabilities are evaluated using the values of the poten-
tial barriers corresponding to each discrete position of the
support position. For each interval AX, the change in prob-
ability Ap; is estimated in each well, and the calculation is
performed over a total of four lattice spacings or more, i.e.,
for X ranging from zero to 4a or higher. We check that the
results over the last lattice spacing are identical to those one
lattice spacing earlier, thus ensuring that the results are not
affected by the initial condition that p;(X=0)=1. For each of
the support positions X, (n=1,2,...,N) over the fourth lat-
tice spacing we calculate the average tip position. With the

average tip position, the average lateral force F(X,) at each
position X, or time X,/V is then calculated. The friction
force is obtained by averaging this over the fourth lattice
spacing,

N

1 —
Ffric = F(Xn) (17)
Nn:l

In Fig. 3 we have plotted examples of the evolving prob-
abilities in each well, for two relative surface corrugations of
v=8 and y=3, a cantilever spring constant of k=1.8 N/m
and a support velocity of V=30 nm/s. At the higher corru-
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FIG. 3. Evolution of the probabilities to find the tip in the local
wells of the total potential-energy profile calculated for a cantilever
spring constant of 1.8 N/m, an attempt frequency of 1.6 kHz, and a
support velocity of 30 nm/s. (a) At a high relative surface corruga-
tion of y=8 precritical jumps dominate. They make the probability
in the initial well reduce smoothly to zero before the Tomlinson
instability point (Ref. 2) is reached and the initial well disappears.
Under these conditions the rate of backward jumps is negligible. (b)
At a low relative surface corrugation of y=3 forward and backward
jumps are frequent also when the system is not close to a critical
point. The tip has a significant probability to be in the initial well
even at the support position at which this well disappears, as is
plotted in panel (c).

gation [Fig. 3(a)] either two or three wells are present in the
potential, depending on the support position X. We see that
the probability to find the tip in the initial potential well
reduces smoothly to zero while the probability of finding it
in the second well approaches unity. This high corrugation
has situated the system in the regime of precritical jumps, in
which backward jumps are very infrequent. At the lower
relative corrugation [Fig. 3(b)] only one or two wells are
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FIG. 4. (a) Friction as a function of the relative corrugation v,
predicted by the Tomlinson model (Ref. 2) (dashed curve) and by
the thermolubricity model (symbols and solid curves). The calcula-
tions were performed for a lattice constant of 0.246 nm, a spring
constant of 1.8 N/m, and a support velocity of 30 nm/s to compare
with experimental data. These calculations illustrate the dramatic
suppression of friction for different values of the attempt frequency
of v=2.2 kHz (black curve and squares), 22 kHz (dark gray curve
and circles), and 220 kHz (light gray curve and triangles). The solid
curves show the results of the numerical calculations and the sym-
bols give the analytical results of the first-order approximation in .
When the attempt frequency is high enough, friction can be very
low even at relatively high corrugations. (b) Ratio of the friction
values predicted by the thermolubricity model to corresponding val-
ues from the Tomlinson model (Ref. 2), plotted against the relative
corrugation y. We refer to this ratio as the thermolubrication factor.
The dashed horizontal line is the Tomlinson model itself (Ref. 2).
The solid curves approach the Tomlinson line (Ref. 2) at high cor-
rugations, where only precritical jumps occur.

present. The probability of finding the tip in the initial po-
tential well remains well above zero all the way up to the
point where the well disappears [Fig. 3(c)]. Under these con-
ditions the rate of backward jumps is in the same order of
magnitude as the rate of forward jumps and the tip jumps
back and forth many times per lattice spacing traveled by the
support.

Figure 4(a) combines the results of such calculations for a
large number of relative corrugations 7, for the 0.246 nm
lattice constant of the graphite basal plane, an effective can-
tilever spring constant of 1.8 N/m estimated from the friction
experiments, a velocity of 30 nm/s, and for three different
values of the attempt frequency v in the form of a plot of the
friction force versus vy. The plot shows that the Tomlinson
model?® predicts dissipationless sliding of the tip for relative
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corrugations y= 1. In the case of weak thermal effects, i.e.,
when only precritical jumps occur, and the friction force de-
velops a weak logarithmic velocity dependence, Eq. (1) pre-
dicts a modest lowering of the friction force with respect to
the Tomlinson curve.? The lower three curves in Fig. 4(a)
show the numerical results for the case of strong thermal
effects. In that case, significant lowering of the friction force
is possible even at relative corrugations much higher than 1.
These results show that temperature can act as a very effi-
cient lubricant.

A counterintuitive aspect of the calculations in Fig. 4(a) is
that the difference with the Tomlinson curve’ increases to-
ward higher y values, whereas one might expect that at
higher corrugations the effect of thermal excitations should
become less important. This seeming contradiction is re-
solved by looking at the relative values, as we have done in
Fig. 4(b). We refer to the reduction factor between the ther-
mally lowered friction force and the friction force expected
within the Tomlinson model® as the “thermolubrication” fac-
tor. As Fig. 4(b) shows, this factor can be significantly below
unity for an intermediate range of y values where thermal
effects manifest themselves very strongly via high frequen-
cies of spontaneous forward and backward jumps, but at
higher 7y values it necessarily approaches unity when only
precritical jumps remain in an ever narrower range of X po-
sitions before each critical point.

IV. EXPERIMENTS
A. Dependence of friction on potential corrugation

Two remarkable experiments reported recently have
shown the reduction in friction by reducing the surface cor-
rugation deliberately—one by varying the normal load ex-
erted by the scanning tip on the surface!” and the other by
varying the relative orientation of the lattices of two surfaces
that were sliding over each other.'>?? In the first case, the
normal load was controlled so that the relative potential cor-
rugation y was varied over a wide range, and when the nor-
mal load was reduced sufficiently that y=1, the system slid
with nearly zero dissipation. In the latter case, a tungsten tip
was scanning over a graphite surface, but a graphite flake
was strongly attached to the tip, so that the sliding actually
took place between two graphite lattices. By rotating the sub-
strate around the tip axis the degree of (in)commensurability
between the two lattices could be tuned. This made the po-
tential corrugation maximal for a narrow region of flake-
substrate orientations where the two lattices were in registry
and could only slide with high dissipation, while it made the
corrugation extremely low and leading to superlubricity for a
wide range of nonmatching orientations.

For the latter experiments, we used a dedicated high-
resolution friction force microscope, featuring a two-
dimensionally sensitive cantilever—the Tribolever™—with
equal lateral (X and Y) spring constants of 5.75 N/m. Com-
bined with the lateral tip compliance, this resulted in an ef-
fective lateral spring constant of 1.8 N/m. The details of the
instrument have been given elsewhere.”>?* Here, we reana-
lyze the experimental data on superlubricity in Ref. 22, in
search for thermal effects at a range of relative corrugations.
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FIG. 5. Variation in stick-slip behavior between different rota-
tion angles of a graphite flake with respect to a graphite substrate
(data from Ref. 13). The black and gray curves are the forward and
reverse scans. (a) At a relative orientation of 0° the lattices are in
registry and dissipation is high. In this case we observe well-defined
stick-slip motion. (b) At an intermediate orientation of 5° the sys-
tem is partially out of registry and the stick-slip motion is irregular
and we observe additional spontaneous backward and forward
jumps. (c) At 20° the lattices are more incommensurate and it is
difficult to recognize any stick-slip character in the stochastic mo-
tion of the tip. We use the Tomlinson model (Ref. 2) to estimate the
potential corrugations from the friction loops using Eq. (19), from
which we obtain the following estimates: (a) y=5.25, (b) y=3.33,
and (c) y=2.47. Note that even in panel (c) the system is not su-
perlubric, i.e., y>1.

The friction loops in this experiment clearly exhibit system-
atic changes in the motion of the tip, as sensed by the Tri-
bolever. Figure 5 depicts typical friction loops observed un-
der three different substrate-flake orientations, namely, (a) in
registry, (b) partially out of registry, and (c) even more out of
registry. The three force loops in Fig. 5 are all for y values
above unity. As vy is reduced, the area enclosed by the fric-
tion loop shrinks, i.e., the friction force is reduced. We rec-
ognize that also the nature of the friction loop changes from
that of well-defined nearly regular stick-slip instabilities (a)
to irregular stick slip with superimposed spontaneous back-
ward and forward jumps and (b) to completely stochastic
driftlike motion. This change in character indicates that in
this experiment the reduction in the friction force is due to a
large part to spontaneous thermal jumps.

For a full quantitative comparison between the experi-
ment and our theory, we have made a careful selection of
force loops. This was necessary because the actual motion of
the tip (flake) is essentially two dimensions, whereas the
theory has been restricted to a one-dimensional lattice. In the
experiments in Ref. 22 a large part of the scans has been
performed for a sliding direction parallel to the [0001] crys-
tallographic axis of the graphite substrate. The fully two-
dimensional sensitivity of the Tribolever allowed for mea-
surements in which this alignment was maintained even
when the tip and substrate were azimuthally rotated with
respect to each other. In the two-dimensional force maps, in
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FIG. 6. Illustration of the selection of force maxima for the
determination of y. The average of the highest force maxima, en-
circled here, was used to obtain F,,, from which y was calculated
using Eq. (19). The dashed lines indicate the values determined for
the selected loop.

particular, those at higher friction forces (closer to commen-
surate contact), we could easily recognize a periodic pattern
of scan lines exhibiting a single period of 0.246 nm, corre-
sponding to nearly one-dimensional trajectories of the flake
over the two-dimensional substrate, and scan lines with two
periods of 0.246 and 0.142 nm, corresponding to more
zigzag-type trajectories. Since the lattice period plays a key
role in our theory, we have selected for our quantitative
analysis the one-dimensional type scan lines (force loops)
with a single lattice period. We have verified that without this
selection procedure the outcome of our analysis is not sig-
nificantly different.

The relative corrugation vy can be estimated from the force
variations in a friction loop by use of the Tomlinson model,
which relates the maximum force F,,,, to the amplitude of
the potential U,

U
Fmax='n';0. (18)

Combining this expression with Eq. (3), we can readily esti-
mate the relative corrugation y completely in terms of ex-
perimental parameters, namely, the spring constant k, the lat-
tice parameter a, and the maximum lateral force F,,,,
y= 2’7Tﬁ. (19)
ka
One of the effects of precritical jumps is to reduce the
average maximum force with respect to the value from Eq.
(18). However, if we concentrate on individual force maxima
and select the highest ones, we hope that we can still obtain
a relatively good albeit somewhat low estimate of F,,. In
practice we have used the average of a few of the highest
force peaks in a set of friction loops to estimate F,,,, for each
set of conditions. This procedure is illustrated in Fig. 6. Be-
cause the 7y value obtained from this procedure is a lower
estimate of the true vy in the experiment, we will further refer
to it as the apparent .
The result of our analysis for the selected “one-
dimensional” scan lines is plotted in Fig. 7 as the friction
force against the (apparent) relative corrugation y. Also
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FIG. 7. Friction against relative corrugation. The data points are
obtained from the experiment. They are compared with the predic-
tion from the Tomlinson model (Ref. 2) (dashed curve) and results
for the thermolubricity model (solid curves). The parameters used
in the calculations are obtained from the experiment (k=1.8 N/m,
a=0.246 nm, and v=30 nm/s). The thermolubricity model is
shown here for two values of the attempt frequency. Excellent
agreement is obtained with the experimental data for an attempt
frequency of 1.6 kHz.

shown in Fig. 7 are friction forces calculated numerically for
the parameter values of, characteristic for the experiment, k
=1.8 N/m, a=2.46 nm, and v=30 nm/s. We immediately
recognize that the experimental results are systematically be-
low the curve calculated with the Tomlinson model.” Note
that since the apparent 7’s used for the experimental points
in Fig. 7 are lower than the actual y’s, the difference between
the measured friction curve and the Tomlinson curve? must
be even larger than Fig. 7 suggests. The significant lowering
of the friction force is a clear indication for the effect of
thermal excitations in the motion of the tip. The thermal
effects manifest themselves most strongly at lower relative
corrugations, where they make friction nearly vanish well
above y=1.

The two lower calculated curves incorporate the effect of
thermal jumps for two different values of the only fitting
parameter in our model, which is the attempt frequency for
thermally activated jumps, v. As Fig. 7 shows, the fit of the
model calculation to the experimental data is excellent for a
value of v=1.6 kHz. This frequency is of the same order of
magnitude as the resonance frequency of the Tribolever used,
which suggests that the thermal vibrations of the entire can-
tilever dominate the thermolubricity effect. However, we will
be confronted with evidence opposing this naive interpreta-
tion in Sec. IV B.

B. Dependence of friction on scan velocity

The average number of thermally activated jumps that the
tip makes to a neighboring potential-energy minimum per
lattice spacing traveled by the support (~/3~') is proportional
to the time required for the support to traverse one lattice
spacing. Therefore, the velocity dependence of the friction
force is a straightforward way to address the effect of ther-
mal excitations. As we discussed in Sec. II B, friction should
vanish in the zero-velocity limit and this should proceed
much more dramatically than the weak logarithmic velocity
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FIG. 8. Two lateral force images, measured in the forward di-
rection, of a graphite surface (3 nm scan range) in a high-symmetry
direction (period of 0.246 nm) at two different velocities of (a) 30
nm/s and (b) 7.5 nm/s. The signature of parallel atomic row is
clearly visible in the upper panel and rather difficult to distinguish
in the lower panel.

dependence that has been predicted and found at higher ve-
locities (Sec. I B).

The primary experimental difficulty of most AFMs and
FFMs in the measurement of friction at very low velocities is
the combination of thermal drift and piezocreep in the pre-
cise position of the tip with respect to the surface and in the
zero-point setting of the force detection system (in our case
the interferometers). In our setup, we employed special
home-built drift compensators, integrated into our detection
electronics, to compensate the variation in the four interfer-
ometer signals caused by drift or creep. This has enabled us
to measure spectacularly slow friction loops even at veloci-
ties down to 0.01 nm/s without any noticeable drift. Here we
present friction forces measured between a tungsten tip and a
graphite surface at velocities between 0.1 and 100 nm/s. The
Tribolever used in these measurements had a lateral spring
constant of 6.1 N/m, which combined with a relatively stiff
tip to an effective lateral spring constant of 4.5 N/m. The
normal load was kept constant at 3.7 nN and we scanned
along the high-symmetry [1110] direction. In order to avoid
graphite flakes getting attached to the tip while scanning, we
used a freshly etched tungsten tip on a high-quality highly
oriented pyrolytic graphite (HOPG) sample, with grain sizes
of the order of millimeters. To minimize the effects of “third
particles,” in particular water from the ambient, we per-
formed the experiments in a closed chamber, where the rela-
tive humidity was maintained below 1%, by continually
flushing with dry nitrogen. The scan range was fixed at 3 nm
and all force images are composed of 512X 512 pixels.

Lateral force images at two different scan velocities of 30
and 7.5 nm/s are shown in Fig. 8. The atomic rows can be
recognized vaguely, but that information is washed out to a
large extent by the thermal noise, especially at the lower
velocity. The difference in the atomic contrast is also seen in
the individual force loops at these two velocities, as is illus-
trated in Figs. 9(a) and 9(b), which further show that the
stick-slip motion is much more irregular at the lower of these
two velocities. Figure 9 also demonstrates that when we re-
duce the velocity, the area enclosed in the lateral force loops
shrinks significantly. In other words, the average friction
force is reduced to a near-zero value. At the lower velocity of
0.6 nm/s [Fig. 9(c)] the character of the motion has changed
completely. It is hard to recognize any atomic periodicity.
The noise shows that the tip makes frequent forward and
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FIG. 9. Three characteristic friction loops at velocities of (a) 30
nm/s, (b) 7.5 nm/s, and (c) 0.6 nm/s. The area enclosed in the force
loops reduces to almost zero as the velocity is reduced. At lower
velocities, multiple peaks can be seen, corresponding to the mul-
tiple backward and forward jumps of the tip. This is a direct dem-
onstration of the three regimes of (a) regular stick slip, (b) stochas-
tic stick slip, and (c) thermal drift motion.

backward jumps. Together, Figs. 9(a)-9(c) illustrate three of
the friction regimes discussed above, namely, regular stick
slip, stochastic stick slip, and thermal drift. It is worth noting
that in this experiment, the normal load is constant and there
is no geometrical variation that could introduce changes in
the corrugation of the potential.

As discussed above, the two-dimensional structure of the
surface leads to distinct variations in the potential-energy
corrugation as a function of the precise location of the scan
line on the surface. These variations are particularly strong
when the scan direction is aligned with one of the crystallo-
graphic directions of the substrate, as is the case here. Such
effects have been reported recently by Schirmeisen et al.® on
a graphite lattice. This variation and the corresponding peri-
odic variation in the observed stick-slip period were already
discussed briefly in Sec. IV A, where we used only a selec-
tion of force loops, corresponding to single-period one-
dimensional-type trajectories over the two-dimensional sur-
face. Here, it serves another purpose, namely, to extract a
series of points of a Fy;.(7y) curve from a single lateral force
image; we use the force maxima in each individual force
loop in the image to obtain a (lower) estimate of vy and the
friction force Fy;. is the average lateral force in the loop. Due
to the variation in potential-energy corrugation from scan
line to scan line, this procedure results in a comfortably wide
range of vy values for which the friction force is obtained
from a single force image.

The result of this analysis is shown in Fig. 10 for three
velocities. The velocity plays a significant role, much stron-
ger than could have been anticipated on the basis of a loga-
rithmic dependence. For the lower velocity of 0.6 nm/s the
friction force is found to approach zero at a high relative
corrugation between y=5 and y=6.

Figure 10 also shows three fits with our model to the data
sets for the three different velocities. In each curve, there has
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FIG. 10. Friction versus relative corrugation plotted together
with theoretical curves. The symbols represent experimental data at
30 nm/s (stars), (b) 7.5 nm/s (squares), and (c) 0.6 nm/s (circles),
which correspond to the stick-slip, stochastic, and thermal drift re-
gimes of thermal activation. The dotted gray line is the friction
according to the Tomlinson model (Ref. 2) and the three solid lines
fitting the data at the three velocities are the results from numerical
calculations using our thermolubricity model (see text).

been only a single free parameter, which was the pre-
exponential factor v, which we have associated before (Fig.
7) with the eigenfrequency of the Tribolever. In order to
obtain a good fit in Fig. 10, we have been forced to use three
very different values for v at the three velocities; the best-fit
value of v changes by 2 orders of magnitude between the
three curves, indicating that the measured velocity depen-
dence is significantly stronger than the model predicts. The
highest v value is as much as 3 orders of magnitude above
the resonance frequency of the Tribolever, which shows that
something else than the eigenfrequency of the sensor is de-
termining the attempt frequency for the thermal jumps.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented the combination of a
simple rate-equation theory and measurements of the veloc-
ity dependence of atomic-scale friction between a graphite
surface and a tungsten tip, either bare or dressed with a
graphite flake. Particular attention has been paid both in the
theory and in the experiment to the regime of ultralow ve-
locities where the thermolubricity effect of thermal excita-
tions completely dominates the motion of the tip. In addition
to the range of velocities where the tip performs early pre-
critical jumps over the energy barriers, which leads to a mod-
est logarithmiclike reduction in the friction force, we identify
an ultralow-velocity regime where the friction force scales
linearly with velocity and it vanishes in the limit of zero
velocity.

Although our one-dimensional theory provides an excel-
lent fit to the corrugation dependence of the friction force at
each separate velocity, it does not allow us to obtain a rea-
sonable simultaneous fit for all velocities. The only free pa-
rameter in the model, which is the pre-exponential factor
(attempt frequency) v for thermally activated jumps, has to
be chosen different for each velocity and typically it is well
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above the resonance frequency of our cantilever.

For this interesting “discrepancy” we suggest three poten-
tial causes. The first of these lies in the strict one-
dimensional nature of the model. Even though we have se-
lected “one-dimensional geometries” in the experiment, by
aligning the scan direction with easy sliding directions on the
graphite crystal and by selecting measured force loops with a
single spatial frequency, the tip still has the freedom to make
sideways excursions during its sliding trajectory, which
should lower the average friction force by an amount that
may depend on the velocity. This point will be addressed in
a separate publication.

The second effect that introduces a difference between
model and measurement is the rapid dynamics of the tip
apex, which has not been accounted for in this theory, in
which the force detection system (tip plus cantilever) was
assumed to respond as a single spring and the damping was
assumed to be high. In a series of recent publications we
have addressed the friction regimes and the extreme friction
lowering introduced by the cantilever-plus-flexible-tip com-
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bination in a one-dimensional two-mass-two-spring model of
the FFM experiment, in which the motion of the tip apex is
characterized by a high attempt rate in the gigahertz
regime. 41

The third element is related to a potentially serious flaw in
our analysis of the experimental force loops. As we men-
tioned in Sec. IV A, we have used the highest force maxima
in the friction loops to obtain an estimate of the relative
corrugation v, and the precritical nature of the jumps renders
this apparent y a lower estimate of the true corrugation. A
preliminary numerical analysis indicates that the error intro-
duced by this procedure can be far from small, possibly mak-
ing us underestimate y by as much as a factor 2 or more.
Since the corrugation appears in the argument of an expo-
nential function [Eq. (1)], such an error introduces a gross
underestimation of the thermal effect at play in most FFM
measurements: this easily goes unnoticed since low values of
the friction force appear to be correlated naturally with low
corrugations of the potential. Further experimental and theo-
retical work is in progress to address this issue.
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